Holy Cross College (Autonomous), Nagercoil $\label{eq:Kanyakumari District, Tamil Nadu.}$ Nationally Accredited with A++ by NAAC V Cycle – CGPA 3.53 Affiliated to # Manonmaniam Sundaranar University, Tirunelveli # DEPARTMENT OF COMPUTER SCIENCE TEACHING PLAN (PG) **ODD SEMESTER** 2025-2026 ## Vision To provide a high-quality undergraduate education in computer science that prepares students for productive careers and lifelong learning. #### Mission - 1. To demonstrate proficiency in problem-solving techniques using the computer. - 2. To demonstrate proficiency in at least two high-level programming languages and two operating systems - 3. To show the ability to analyze a problem, and identify and define the computing requirements appropriate to its solution. - 4. To show the ability to function effectively on teams to accomplish a common goal. - 5. To sensitize the students to the social realities around them with the vision of making them responsible citizen. # **Programme Educational Objectives (PEOs)** | PEO | Upon completion of UG Degree Programme, the graduates will be able to: | |---------|--| | PEO – 1 | apply scientific and computational technology to solve socio ecological issues | | | and pursue research. | | PEO – 2 | continue to learn and advance their career in industry both in private and public | | | sectors. | | PEO – 3 | develop leadership, teamwork, and professional abilities to become a more | | | cultured and civilized person and to tackle the challenges in serving the country. | # **Programme Outcomes (POs)** | PO | Upon completion of M.Sc. Degree Programme, the graduates will be able | |--------|---| | | to: | | PO – 1 | apply their knowledge, analyze complex problems, think independently, formulate and perform quality research. | | PO – 2 | carry out internship programmes and research projects to develop scientific and innovative ideas through effective communication. | | PO – 3 | develop a multidisciplinary perspective and contribute to the knowledge capital of the globe. | | PO – 4 | develop innovative initiatives to sustain ecofriendly environment | | PO – 5 | through active career, team work and using managerial skills guide people to the | | | right destination in a smooth and efficient way. | | | | | | | | | | |--------|---|--|--|--|--|--|--|--|--|--| | PO – 6 | employ appropriate analysis tools and ICT in a range of learning scenarios, | | | | | | | | | | | | demonstrating the capacity to find, assess, and apply relevant information sources. | | | | | | | | | | | PO – 7 | learn independently for lifelong to execute professional, social and ethical | | | | | | | | | | | | responsibilities promoting sustainable development. | | | | | | | | | | # **Programme Specific Outcomes (PSOs)** | PSOs | Upon completion of the M.Sc. Degree Programme, the graduates will be | |----------------|---| | | able to: | | PSO – 1 | apply profound knowledge to analyze and design software and systems containing hardware and software components of varying complexity. | | PSO - 2 | apply mathematical model, algorithmic principles, and computer science theory in the design of real-time applications | | PSO – 3 | apply knowledge of computing to produce effective designs and solutions for specific problems. | | PSO - 4 | identify, analyze, design, optimize and implement system solutions using appropriate algorithms of varying complexity. | | PSO - 5 | work in multidisciplinary teams in small- and large-scale projects by utilizing modern software tools and emerging technologies to develop complex products for the societal needs. | Class : I M. Sc. Computer Science Title of the Course : Core Course I: Analysis and Design of Algorithms Semester : I Course Code : SP231CC1 | Course Code | L | Т | S | P | Credits | edits Inst. Hours Total Hours CIA External T | Total | Marks | | | |-------------|---|---|---|---|---------|--|-------|-------|----|-----| | Course Couc | | 1 | | 1 | Credits | | Total | | | | | SP231CC1 | 6 | - | - | - | 5 | 6 | 90 | 25 | 75 | 100 | #### **Objectives** 1. Enable the students to learn the elementary data structures and algorithms. 2. Presents an introduction to the algorithms, their analysis and design. 3. Discuss various methods like basic traversal and search techniques, divide and conquer method, dynamic programming, backtracking. 4. Understood the various design and analysis of the algorithms. #### **Course Outcomes** | | Upon completion of this course, the students will be able to: | | | | | | | | | | |---|--|---------|--|--|--|--|--|--|--|--| | 1 | get knowledge about algorithms and determines their time complexity. | | | | | | | | | | | 2 | gain good understanding of Greedy method and its algorithm. | K3 (Ap) | | | | | | | | | | 3 | able to describe about graphs using dynamic programming technique. | K4 (An) | | | | | | | | | | 4 | demonstrate the concept of backtracking & branch and bound technique. | K3(Ap) | | | | | | | | | | 5 | explore the traversal and searching technique and apply it for trees and graphs. | K6(C) | | | | | | | | | K1–Remember; K2–Understand; K3-Apply; K4-Analyze, K5- Evaluate, K6-Create Teaching plan Total Contact hours: 90 (Including lectures, assignments and tests) | Unit | Module | Торіс | Teaching
Hours | Assessment
Hour | Cognitive
level | Pedagogy | Student
Centric
Method | E-Resources | Assessment/
Evaluation
Methods | |------|-----------|--|-------------------|--------------------|--------------------|---|--|---|---| | I | Introduct | | | | , | | | , | | | | 1 | Introduction
about
Algorithm,
Algorithm
Definition | 3 | 1 | K1 (R) | Direct
Instruction,
Explanation
with
Examples | Think-Pair-
Share, Group
Brainstorming | NPTEL Lectures,
Neso Academy,
Class PPTs | MCQs, Oral
Quiz, Exit
Tickets, CIA I | | | 2 | Algorithm
Specification | 2 | | K2 (U) | Conceptual
Teaching,
Illustrative
Examples | Peer
Explanation,
Mind Mapping | Tutorialspoint,
Course Handouts,
Lecture Videos | Written Assignments, Concept Mapping | | | 3 | Space complexity, Time Complexity, Asymptotic Notations | 2 | 1 | K3 (Ap) | Chalk &
Talk, Visual
Pedagogy,
Tabular
Comparison | Group Activity
on Code
Tracing,
Speed-
Accuracy Task | GeeksforGeeks,
Visualgo.net, Big-O
Cheat Sheets | Conceptual
Worksheet,
Timed Coding
Test | | | 4 | Elementary Data Structures, Stacks, and Queues | 2 | | K3 (Ap) | Interactive Coding Demo, Problem Solving Pedagogy | Flashcards,
Role Play
(Stack/Queue
simulation) | Coding Ninjas,
Visualgo.net, C++
IDE | Lab Exercise,
Trace & Dry
Run
Evaluation,
CIA I | | | 5 | Binary Tree,
Binary Search
Tree | 3 | 1 | K3 (Ap) | Exploratory
Teaching,
Diagram
Analysis | Tree Drawing
Activity, In-
Class Puzzle
Solving | Tree Visualizers,
Java Applets | Trace Activity,
Tree
Construction
Test, CIA I | |----|-----------|--|---------|---|---------|---|--|---|--| | | 6 | Heap, Heap
sort | 3 | | K4 (An) | Black Box
Teaching,
Live Trace
Demo | Sorting Race,
Step-Wise
Debugging | YouTube Tutorials
(Jenny's Lectures),
GeeksforGeeks | Sort Result Validation, Output Comparison | | | 7 | Graph | 2 | | K2 (U) | Concept
Mapping,
Comparativ
e Lecture | Graph Mapping Game, Teambased Graph Design | GraphOnline,
TutorialsPoint | Labeling
Exercise, Short
Test | | II | Traversal | l And Search Tecl | nniques | | | | | | | | | 1 | Basic
Traversal and
Search
Techniques | 3 | 1 | K3 (Ap) | Algorithm
Trace, Dry
Run | Pair
Programming,
Path-Finding
Game | Programiz,
HackerRank Graph
Problems | Code Output,
Trace Sheet
Submission | | | 2 | Techniques for
Binary Trees | 3 | | K4 (An) | Guided
Practice,
Pseudocode
Mapping | Role Play
Traversal,
Code
Walkthrough | Online C++ IDE,
Animation Tools | Tree Output
Evaluation,
Mini Project | | | 3 | Techniques for Graphs | 2 | 1 | K5 (E) | Visual
Teaching,
Whiteboard
Mapping | Simulation Activity, Group Algorithm Building | Tinkercad Circuits
(Graph Concepts),
GFG | Coding
Assignment,
MCQ +
Coding Viva | | | 4 | Divide and
Conquer:
General
Method Binary
Search | 2 | | K4 (An) | Strategy
Comparison
, Visual
Flow
Mapping | Algorithm
Puzzle, Pair
Debugging | Pseudocode
Simulators,
CodeChef Practice | Performance
Evaluation, In-
lab Coding
Test | | | 5 | Merge Sort | 3 | 1 | K3 (Ap) | Algorithm Flow with Recursive Visuals | Paper-based
Dry Run, Pair
Tracing | Animated Sorting
Tools, Slide
Presentations | Dry Run Table
Submission,
Quiz | | III | 6 Greedy M | Quick Sort | 3 | | K3 (Ap) |
Pictorial
Pedagogy,
Walkthroug
h Examples | Code
Implementatio
n Task, Speed
Test | Sorting Algorithm
Animations, Edureka | Performance-
Based
Evaluation | |-----|------------|--------------------------------|---|---|---------|---|--|---|---| | | 1 | The Greedy Method Introduction | 3 | 1 | K2 (U) | Real-World
Analogy,
Comparativ
e Strategy | Case Study,
Map Coloring
Game | YouTube:
Simplilearn,
Medium Articles | Problem
Analysis Task,
MCQ Test | | | 2 | General
Method | 1 | | K3(Ap) | Comparative Analysis (Greedy vs. Dynamic), Problem-Solving Pedagogy with Worked Examples, Algorithm Construction Method | 0020Concept Mapping: Visual representation of greedy decisions, Think-Aloud Protocol: Students verbalize their logic while solving | GeeksforGeeks: Hackerrank / Leetcode:,YouTube (Neso Academy, Jenny's lectures): | Short Tests/Quizzes: Conceptual and output- based, Debugging Exercise | | | 3 | Knapsack
Problem | 2 | 1 | K4 (An) | Solution
Mapping,
Live
Tracing | Value-Density
Sort
Simulation | Leetcode Problem
Page, Hackerrank | Output with Logic Justification | | | 4 | Minimum Cost
Spanning Tree | 3 | | K4 (An) | Step-By-
Step
Algorithm
Instruction | Hands-on
Sorting, Graph
Edge Mapping | MST Animation
Tools, GFG Practice | Trace Submission, Output Snapshot | | | 5 | Single Source
Shortest Path | 2 | 1 | K4 (An) | Tabular
Trace, Path
Weight
Table | Problem Solving in Pairs, Shortest Route Game | VisuAlgo, GFG | Tabular
Answer Sheet,
Code Viva | | IV | Dynamic | Programming | | | | | | | | | | 1 | Dynamic
Programming
General
Method | 1 | 1 | K5 (E) | Pseudocode
Breakdown,
Memoizatio
n Teaching | Recursive to Iterative Comparison, Code Walkthrough | Dynamic Prog.
Visual Tools,
EduHub | Tabular DP
Explanation,
Test Case
Validation | |---|----------|---|---|---|---------|--|---|--|---| | | 2 | Multistage
Graphs | 3 | | K6 (C) | Complex
Problem
Analysis | Step-by-Step
Problem
Solving in
Groups | Advanced
Visualizers, Graph
Theory Modules | Presentation,
Logic Flow
Chart | | | 3 | All Pair
Shortest Path | 2 | 1 | K3 (Ap) | Matrix Trace Pedagogy, Loop-by- Loop Teaching | Interactive
Matrix Fill-in | Visual Matrix Tools,
Animations | Worksheet
Completion,
Code Output
Check | | | 4 | Optimal
Binary Search
Trees | 3 | | K6 (C) | Formula Derivation, Tabular Teaching | Dry Run, Cost
Matrix
Completion | Textbook Scans,
YouTube
Explanation Videos | Problem Solving Sheet, In-Class Assessment | | | 5 | 0/1 Knapsacks | 2 | 1 | K4 (An) | Recursion
to Table
Conversion | Individual
Coding,
Tabular Fill
Task | HackerRank, GFG | Code
Debugging
Task | | | 6 | Traveling
Salesman
Problem | 2 | | K6 (C) | Solution
Tree, Subset
Table
Mapping | Team Debugging, Path Mapping Game | TSP Tools, Graph
Animations | Project Work,
Logic Review | | | 7 | Flow Shop
Scheduling | 3 | | K5 (E) | Time Block
Diagram,
Real World
Analogy | Job
Assignment
Simulations | Industry Use Case
PPTs | Scheduling
Problem
Assignment | | V | Backtrac | king | | | | | | | | | | 1 | Backtracking General Method | 2 | 1 | K4 (An) | State Space
Tree
Drawing | Dry Run
Boards, Step
Tree
Simulation | NPTEL, Notes | Output Check,
Viva Voce | | 2 | 8-Queens
Problem | 3 | | K6 (C) | Board
Mapping,
Position
Analysis | Grid
Simulation,
Solo Coding | GeeksforGeeks 8Q
Tool, YouTube
Visuals | Accuracy
Check, Step
Trace | |---|------------------------------------|---|---|---------|---|------------------------------------|--|----------------------------------| | 3 | Sum of
Subsets | 1 | 1 | K5 (E) | Subset
Table Logic | Paper-Based
Simulation | C++ Online IDEs | Subset Count
Task | | 4 | Graph
Coloring | 2 | | K4 (An) | Color
Assignment
Rules | Paper Coloring with Rules | Graph Coloring
Demos | Coloring
Assignment | | 5 | Hamiltonian
Cycles | 2 | 1 | K5 (E) | Cycle
Strategy | Graph
Exploration | Visual Graph
Explorer | Trace Path & Output Task | | 6 | Branch And
Bound: The
Method | 3 | | K6 (C) | Bounding
Condition
Demo | Tree Pruning
Activity | Tree Diagram Tools | BnB
Explanation
Viva | | 7 | Traveling Salesperson | 2 | | K6 (C) | Lower
Bound
Strategy | Simulation with Scenarios | Advanced Solvers,
Textbook Examples | Case-based
Evaluation | Course Focusing on Employability/Entrepreneurship/Skill Development: Skill Development Activities - 1. Develop a recursive and iterative version of classic algorithms (Factorial, Fibonacci, Tower of Hanoi). - 2. Create a comparative performance analysis (time and space) of sorting algorithms (Merge, Quick, Heap). Course Focusing on Cross-Cutting Issues: Environment Sustainability, Professional Ethics #### 1. Environment Sustainability: - Design an algorithm to minimize energy usage in a smart grid or IoT-based system. - Case study: Algorithmic efficiency and its impact on energy consumption in large-scale cloud systems. #### 2. Professional Ethics: Debate: Ethical implications of using optimization algorithms in surveillance or personal data analysis. #### Assignments 1. Analyze how optimization algorithms improve logistics and reduce carbon footprint. *Submission Date: 15-07-2025* 2. Develop and evaluate different greedy and dynamic programming solutions to the Knapsack problem. *Submission Date: 10-08-2025* #### **Sample Questions** Part A – (1 Mark) - 1. What is the time complexity of binary search? (K1–R, CO-1) - a) O(n) b) $O(\log n)$ c) $O(n \log n)$ d) O(1) - 2. Which algorithm design technique uses optimal substructure and overlapping subproblems? (K2–U, CO-2) - a) Greedy b) Backtracking c) Dynamic Programming d) Divide and Conquer - 3. In heap sort, which data structure is used? (K1-R, CO-3) - a) Queue b) Stack c) Heap d) Tree - 4. What is the main idea of the greedy method? (K2–U, CO-3) - a) Consider all possibilities b) Choose the best at each step c) Divide into subproblems d) Repeat - 5. What does DFS use to track visited nodes? (K2–U, CO-2) - a) Stack b) Queue c) Linked List d) Set - 6. Which of the following is a backtracking problem? (K1–R, CO-4) - a) Dijkstra b) Floyd-Warshall c) 8-Queens d) Prim's Algorithm - 7. What is the worst-case time complexity of quick sort? (K2–U, CO-3) - a) $O(n \log n)$ b) $O(n^2)$ c) O(n) d) $O(\log n)$ - 8. Which graph algorithm finds the shortest path from a single source to all others? (K2–U, CO-2) - a) Kruskal b) DFS c) Dijkstra d) BFS - 9. What does "branch and bound" do to explore possibilities? (K2–U, CO-4) - a) Trims possibilities with bounds b) Uses stack c) Uses recursion only d) Uses greedy rules #### Part B – (6 Marks) - 1. Differentiate between Divide and Conquer and Dynamic Programming. (K3–Ap, CO-2) - 2. Explain the working of Prim's and Kruskal's algorithms. (K3–Ap, CO-3) - 3. Write a pseudocode for Merge Sort and explain each step. (K3-Ap, CO-1) - 4. Describe the steps in solving the 0/1 Knapsack problem using Dynamic Programming. (K4-An, CO-4) - 5. What are the limitations of the Greedy method? Give an example. (K4–An, CO-4) - 6. Compare brute-force, greedy, and dynamic approaches using the Travelling Salesman Problem. (K4–An, CO-5) #### **Part C – (12 Marks)** - 1. Explain Divide and Conquer with examples Binary Search, Merge Sort, and Quick Sort. Include time complexity analysis. **(K4–An, CO-2)** - 2. Discuss Greedy Method with applications Activity Selection, Huffman Coding, and Knapsack. (K4–An, CO-3) - 3. Analyze Dynamic Programming through 0/1 Knapsack and Matrix Chain Multiplication problems. (K5–E, CO-4) - 4. Describe Backtracking and apply it to solve 8-Queens and Graph Coloring problems. (K5–E, CO-5) - 5. Compare Branch and Bound and Backtracking with real-world examples. (K5–E, CO-5) **Head of the Department** Dr. V. S.Harilakshmi **Course Instructor** Dr. J Jackulin Reeja Class : I M.Sc Computer Science Title of the Course : Core Course II: Object Oriented Analysis and Design & C++ Semester : I Course Code : SP231CC2 | C C 1 | т | T | ъ | C | C 1:4 | T 4 TT | Total | Marks | | | |-------------|---|---|---|---|---------|-------------|-------|-------|----------|-------| | Course Code | L | 1 | P | 3 | Credits | Inst. Hours | Hours | CIA | External | Total | | SP231CC2 | 6 | - | - | - | 4 | 6 | 90 | 25 | 75 | 100 | ## **Objectives** 1. Present the object model, classes and objects, object orientation, machine view and model management view. 2. Enables the students to learn the basic function, principles and concepts of object-oriented analysis and design. 3. Enable the students to understand C++ language with respect to OOAD #### **Course Outcomes** | COs | Upon completion of this course, students will be able to | 0: | |-----|--|----| | 1 | understand the concept of object-oriented development and modelling techniques | К2 | | 2 | gain knowledge about the various steps performed during object design | К3 | | 3 | abstract object-based views for generic software systems | К3 | | 4 | link
OOAD with C++ language | K5 | | 5 | apply the basic concept of OOPs and familiarize to write C++ program | K6 | Teaching plan Total Contact hours: 90 (Including lectures, assignments and tests) | Unit | Module | Торіс | Teaching
Hours | Assessment
Hour | Cognitive
level | Pedagogy | Student
Centric
Method | E-Resources | Assessment/
Evaluation
Methods | |------|------------|---|-------------------|--------------------|--------------------|---|---|-------------------------|--------------------------------------| | I | The Object | ct Model | | | | 1 | | I | | | | 1 | Evolution of the Object Model | 3 | 1 | K1 (U) | Lecture with PPT | Concept
Mapping. | Powerpoint slides | Oral
Presentation | | | 2 | Elements of the
Object Model | 2 | | K2(U) | Flipped
Classroom,
Problem
Solving | Group
Discussion | Video
Lecture | Quiz | | | 3 | Applying the Object Model | 2 | 1 | K3(Ap) | Collaborative
Learning | Collaborative
Learning,
Concept
Mapping | E -Content
(MS-Word) | Asking
Questions | | | 4 | Classes and
Objects: Nature
of Object | 3 | | K5(E) | Blended
Learning | Problem-Based
Learning, Case
Study Analysis | Youtube
Videos | Open book Test | | | 5 | Relationship
among Objects | 5 | 1 | K5(E) | Concept-
based
discussion | Problem solving | Online
Tutorials | Assignments | | II | Classes ar | nd Object | | | | | | | | | | 1 | Nature of Class | 3 | 1 | K4(An) | Lecture using
Chalkand talk | Inquiry based
Learning | Interactive
PPT | Homework | | | 2 | Relationship
among Classes | 3 | | K5(E) | Computation al thinking | Using computational techniques for solving problems | E-Content
(MS-Word) | Questioning in the class room | |-----|---|--|-------------|---|---------|--|---|--|-------------------------------| | | 3 | Interplay of
Classes &
Objects | 3 | 1 | K5(E) | Integrative
Teaching | Analyze problem situation | You tube
Video | Debates | | | 4 | Classification
Importance | 2 | | K4(An) | Reflective
Thinking | Skill based course | E-Content (MS-Word) | Group
discussion | | | 5 | Identifying Classes/Objects & Abstractions | 4 | 1 | K4(An) | Project Based | Practical | Using Cloud
server via
internet | Open book
exam | | III | | Introduction to C | <u>'</u> ++ | 1 | | 1 | | 1 | | | | 1 | Input/Output
Statements | 2 | 1 | K 2 (U) | Collaborative
Learning | Group
discussion | Notes and
Slides | Observation note | | | 2 | Declarations | 3 | | K3 (Ap) | Conceptual
Demonstratio
n | Seminar | PPT | Presentation | | | 3 | Control
Structures | 4 | 1 | K5(E) | Inquiry based approach | Analyze problem situation | Discussion
Forum(Googl
e class room) | Creative writing | | | 4 | Functions in C++ | 3 | | K3 (Ap) | Coopeative
Learning,
Project based | Debates | PPT | Group
discussion | | | 5 | Practice & Debugging | 3 | 1 | K5(E) | Problem Solving Techniques | Problem based learning | Online
Tutorials | Oral Test | |----|---|---------------------------|-------------|----------|---------|--|---|--|---| | IV | | Inheritance and (| Overloading | <u> </u> | | | | l | | | | 1 | Inheritance | 3 | 1 | K4 (An) | Context
Based,
Blended
Learning | Group discussion, Model making | Using E-
Book | Assignment | | | 2 | Overloading | 3 | | K3 (Ap) | Collaborative , Simulation | Peer coding,
Group code
challenge | C++
Compiler | Code debugging task | | | 3 | Type
Conversion | 3 | 1 | K4 (An) | Problem
Based | Assignment | Submit the assignment in Google Class Room | Online
Assignment | | | 4 | Pointers and
Arrays | 3 | | K5(E) | Demonstrativ
e, Inquiry-
Based | Hands-on
practice, Group
project | C Compiler | Ask to write a program and presentation | | | 5 | Constructors/De structors | 3 | 1 | K5(E) | Flipped
Classroom | Solving problems | Discussion with PPT | Code review | | V | | Memory Manage | ment Opera | ntors | 1 | | 1 | 1 | 1 | | | 1 | Memory Mgmt
Operators | 3 | 1 | K5(E) | Problem Based, Simulation | Group analysis | PPT | Class test | | | | Polymorphism
& Virtual | 3 | | K3 (Ap) | Case Study,
Blended | Peer review,
Group | MS-Word | Open Book
exam | | 2 | Functions | | | | Learning | discussion | | | |---|----------------------------|---|---|--------|-------------------------------|---|------------------------|-----------------------| | 3 | Files & Exception Handling | 3 | 1 | K4(An) | Context Based, Inquiry- Based | Problem solving, Simulation exploration | You tube videos | Short answer test | | 4 | String Handling | 3 | | K5(E) | Inquiry -
Based | Group
Discussion | E-Content
(MS-Word) | Slip test | | 5 | Templates | 3 | 1 | K5(E) | Case study method | Solving problems | Powerpoint | Group
Presentation | Course Focussing on Employability/ Entrepreneurship/ Skill Development: Activities (Em / En /SD): SkillDevelopment - 1. Write C++ programs for Virtual Function.. - 2. Write C++ programs for Operator overloading ## Assignments: 1.Relationship among Objects (Last date to submit :20-07-2025) 2.C++ program for Inheritance (Last date to submit :12-08-2025) Seminar Topics: Pointers and Arrays, Constructors ## Part A (1 mark) - 1. The object model encompasses ___(**K2-U, CO-1**) - a) Abstraction b) Encapsulation c) Modularity d) All the above - 2. Each class in a program is related with each other (T/F)(K4-An, CO-2) - 3. is an input object in c++.(**K3-Ap**, **CO-2**) - 4. What is inheritance in C++? - a) Wrapping of data into a single class b) Deriving new classes from existing classes - c) Overloading of classes - d) Classes with same names - 5. Which function is used to compare the two strings(K3-Ap, CO-5) #### Part B (6 marks) - 1. Analyze the object Mode.(K4-An, CO-1) - 2. Explain about relationship among objects (K2-U, CO-2) - 3. What are control structures? Explain.(K3-Ap, CO-2) - 4. Elaborate about Inheritance with example(K5-E, CO-4) - 5. Discuss with Polymorphism (K5-E, CO-5) Part C (12 marks) - 1. Discuss the elements of the Object Model. (K1-U, CO-1) - 2. Write about Classification: The importance of Classification(K3-Ap, CO-2) - 3. Discuss with Functions in C++with example (K3-Ap, CO-3) - 4. Explain about operators overloading with example(K5-E, CO-4) - 5. List out the string handling functions and explain with example(K6-C, CO-5) **Head of the Department** Dr. V. S. Harilakshmi **Course Instructor** Dr. F. Fanax Femy Class : I M.Sc. Computer Science Title of the Course : CORE LAB COURSE-I: ALGORITHM AND OOPS LAB Semester : I Course Code : SP231CP1 | Course Code | L | T | P | S | Credits | Inst. | Total | | Marks | | |--------------------|---|---|---|---|---------|-------|-------|-----|-----------------|-------| | | | | | | | Hours | Hours | CIA | External | Total | | SP231CP1 | - | - | 5 | | 3 | 5 | 75 | 25 | 75 | 100 | # **Learning Objectives:** - 1. This course covers the basic data structures like Stack, Queue, Tree, List. - 2. This course enables the students to learn the applications of the data structures using various techniques - 3. It also enables the students to understand C++language with respect to OOAD concepts #### **Course Outcomes** | On the s | On the successful completion of the course, student will be able to: | | | | | | | | | | | |----------|---|--------|--|--|--|--|--|--|--|--|--| | 1 | understand the concepts of object oriented with respect to C++ | K1, K2 | | | | | | | | | | | 2 | able to understand and implement OOPS concepts | K3, K4 | | | | | | | | | | | 3 | implementation of data structures like Stack, Queue, Tree, List using C++ | K4, K5 | | | | | | | | | | | 4 | application of the data structures for Sorting, Searching using different techniques. | K5, K6 | | | | | | | | | | | 5 | create an application using inheritance | K5, K6 | | | | | | | | | | K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate; K6- Create # Teaching Plan Total Contact hours: 75 (Including Practical Classes and Assessments) | Unit | Торіс | Teaching
Hours | Assessment
Hours | Cognitive level | Pedagogy | Student
Centric
Method | E-Resources | Assessment/
Evaluation
Methods | |------|--|-------------------|---------------------|-----------------|--------------------------------------|--|----------------------------|--------------------------------------| | 1 | Write a program to solve the tower of Hanoi using recursion. | 5 | 1 | K5(E) | Demonstrative,
Problem
Solving | Recursive
Thinking,
Individual
Coding | C Compiler,
Online IDEs | Code Output
Evaluation, Viva | | 2 | Write a program
to traverse
through binary
search tree using
traversals. | 5 | | K4(An) | Activity
Based, Guided
Practice | Tree Visual
Tools, Peer
Review | Data
Structure
Visualizer | Lab Task
Submission | |---|--|---|---|--------|---|--------------------------------------|--|-------------------------------| | 3 | Write a program
to perform
various
operations on
stack using
linked list. | 5 | | K3(AP) | Demonstration |
Practical
Implementati
on | C Compiler,
Online C
Editor | Lab Evaluation | | 4 | Write a program
to perform
various
operation in
circular queue. | 5 | | K4(An) | Hands-on
Training | Simulation
Based
Learning | Code::Blocks
, TurboC++ | Internal Lab Test | | 5 | Write a program to sort an array of an elements using quick sort. | 5 | 1 | K5(E) | Exploratory,
Step-by-step
Tracing | Peer
Programming | YouTube
(Trace
videos),
GeeksforGee
ks | Problem Solving
Assignment | | 6 | Write a program to solve number of elements in ascending order using heap sort. | 5 | | K5(E) | Interactive Lab
Demonstration | Dry Run
Practice | C
Programming
Resources,
NPTEL | Problem-Based
Evaluation | | 7 | Write a program to solve the knapsack problem using | 5 | | K6(C) | Project-Based,
Algorithm
Design | Group
Coding | Hackerrank /
Leetcode | Case-based
Assessment | | | greedy method | | | | | | | | |----|--|---|---|--------|---|--|--|------------------------------| | 8 | Write a program to search for an element in a tree using divide& conquer strategy. | 5 | | K5(E) | Comparative
Strategy Based | Divide &
Conquer
Demonstratio
n | Tree
Visualizers,
Stack
Overflow | Assignment + Viva | | 9 | Write a program to place the 8 queens on an 8X8 matrix so that no two queens Attack. | 6 | 1 | K6(C) | Inquiry-Based,
Problem
Solving | Algorithm
Visualization | Backtracking
Videos,
Pseudocode
Tools | Performance
Rubric | | 10 | Write a C++ program to perform Virtual Function | 4 | | K4(An) | Demonstrative,
Object-
Oriented
Teaching | Practical with OOP Objects | C++
Compiler,
OnlineGDB | Code Review +
Viva | | 11 | Write a C++ program to perform Parameterized constructor | 4 | 1 | K3(Ap) | Demonstration
, Hands-on | Individual
Programming | C++
TutorialsPoin
t | Lab Performance | | 12 | Write a C++ program to perform Friend Function | 4 | | K4(An) | Object-
Oriented Lab
Exercise | Peer
Assistance | YouTube:
C++ Friend
Functions | Code Output
Verification | | 13 | Write a C++ program to perform | 4 | 1 | K3(Ap) | Concept-
Oriented
Demo | Practice Task
Sheets | GeeksforGee
ks C++
Overloading | Assessment
Through Output | | | Function
Overloading | | | | | | | |----|---|---|-------|--------------------------------------|--|----------------------------|---------------------------------| | 14 | Write a C++program to perform Single Inheritance | 4 | K5(E) | Project-Based | File Handling
Exercises | C++ File I/O
Tutorials | Project File
Evaluation | | 15 | Write a C++program to perform Employee Details using files. | 4 | K5(E) | Demonstrative,
Problem
Solving | Recursive
Thinking,
Individual
Coding | C Compiler,
Online IDEs | Code Output
Evaluation, Viva | Course Focussing on Employability/ Entrepreneurship/ Skill Development: Employability, Skill Development Activities (Em / En /SD): Hands on Training, Project Course Focusing on Cross Cutting Issues (Professional Ethics/ Human Values/Environment Sustainability/ Gender Equity): NIL Environment Sustainability activities related to Cross Cutting Issues: NIL #### Sample questions - 1. Write a program to sort an array of an elements using quick sort. - 2. Write a program to solve number of elements in ascending order using heap sort. - 3. Write a program to solve the knapsack problem using greedy method - 4. Write a program to search for an element in a tree using divide& conquer strategy. - 5. Write a program to place the 8 queens on an 8X8 matrix so that no two queens Attack. - 6. Write a C++ program to perform Virtual Function - 7. Write a C++ program to perform Parameterized constructor **Head of the Department** **Course Instructor** Dr. V. S. Harilakshmi Dr. J. Jackulin Reeja Class : I M.Sc Computer Science **Title of the Course : Elective Course 1: Python Programming** Semester : V Course Code : SP231EC1 | | т | T | ъ | C | C 124- | Inst House | Total | | Marks | | | | |-------------|---|---|---|---|---------|-------------|-------|-----|----------|-------|--|--| | Course Code | L | 1 | P | 3 | Credits | Inst. Hours | Hours | CIA | External | Total | | | | SU231EC1 | 5 | - | - | - | 3 | 5 | 75 | 25 | 75 | 100 | | | # **Learning Objectives:** 1. Presents an introduction to Python, creation of web applications, network applications and working in the clouds 2. Use functions for structuring Python programs 3. Understand different Data Structures of Python 4. Represent compound data using Python lists, tuples and dictionaries #### **Course Outcomes** | СО | Upon completion of this course, the students will be able to: | PSO
addressed | Cognitive
level | |----|---|------------------|--------------------| | 1 | understand the basic concepts of Python
Programming | PSO- 1 | K1(R) | | 2 | understand file operations, Classes and Objects | PSO- 3 | K3(A) | | 3 | acquire Object Oriented Skills in Python | PSO- 2 | K4(An) | | 4 | develop web applications using Python | PSO- 4 | K6(C) | | 5 | develop Client Server Networking applications | PSO- 5 | K6(C) | K1-Remember; K2 - Understand; K3-Apply; K4 - Analyze; K5 - Evaluate; K6-Create Teaching Plan Total Contact hours: 75 (Including lectures, assignments and tests) | Unit | Module | Торіс | Teaching
Hours | Assessment
Hours | Cognitive
Level | Pedagogy | Student
Centric
Method | E-
Resources | Assessment/
Evaluation
Methods | |------|-----------|--|-------------------|---------------------|--------------------|---|------------------------------|--|--------------------------------------| | I | Introduct | ion | | 1 | | 1 | | 1 | | | | 1 | Python
Introduction,
Numbers,
Strings | 3 | 1 | K2(U) | Lecture Method,
Conceptual
Teaching | Group
Discussion,
Q&A | PPTs, You tube Video | Quiz, Oral
Questions,
CIA I | | | 2 | Variables, Lists | 3 | | K2(U) | Flipped
Classroom | Think-Pair-
Share | Self made
You tube
videos | Assignment,
MCQ, CIA I | | | 3 | Tuples | 2 | 1 | K3(Ap) | Demonstration,
Problem Solving | Problem
Solving | Interactive
PDFs, Geek
for geeks | Slip Test, Viva
Voce, CIA I | | | 4 | Dictionaries Sets | 2 | | K3(Ap) | Hands-on
Training | PyCharm
Session | Analytics
Vidya,
W3Schools, | Lab
Evaluation,
CIA I | | | 5 | Comparison | 2 | 1 | K3(Ap) | Lecture with PPT | Practical exercises | Youtube vidoes | Questioning,
CIA I | | II | Code Stru | ctures | | | | | | | | | | 1. | Code Structures: if, elseif, and else Repeat with while Iterate with for | 2 | 1 | K2(U) | Demonstrative,
Visual Learning | Problem
Solving | YouTube,
Analytics
Vidya | Slip Test, CIA
I | | | 2. | Comprehensions | 2 | | K3(Ap) | Inquiry-Based | Hands-on | PPT, Geek | Activity | | | | | | | | Learning | Exercises | for geeks | Submission,
CIA I | |-----|----------|--|-----|---|--------|---------------------------|--|--------------------------------|---------------------------------| | | 3. | Functions | 2 | 1 | K3(Ap) | Problem Solving | Simple exercise solving | Recorded
Videos | Evaluation
Sheet, CIA I | | | 4. | Generators Decorators | 2 | | K4(An) | Flipped Class
room | Group Discussion, Brain Storming | Geek for
geeks | Quiz, CIA I | | | 5. | Namespaces and Scope | 2 | 1 | K4(An) | Interactive PPT Teaching | Problem
Solving
Exercises | Recorded
Lectures | Oral Test, CIA | | | 6. | Handle Errors with try and except, User Exceptions | 2 | | K4(An) | Problem-Based
Learning | Textbook
notes
summarisati
on | Geek for geeks | Group
Assignment,
CIA I | | III | Modules, | Packages and Class | ses | | 1 | | | | | | | 1. | Modules, Packages, and Programs: Standalone Programs Command Line Arguments, Modules and the import Statement | 2 | 1 | K2(U) | Lecture with Examples | Concept
Mapping | e-Notes,
Schema
Diagrams | Quiz, CIA II | | | 2. | The Python Standard Library | 2 | | K3(Ap) | Demonstrative | Group
Discussion | You tube
Videos | Online
Assessment,
CIA II | | | 3. | Objects and Classes:Define a Class with class | 2 | 1 | K3(Ap) | Hands-on SQL
Practice | Simple
Exercises | You tube videos | Code
Evaluation,
CIA II | |----|-----------|--|---|---|--------|-----------------------------------|----------------------------------|-------------------------|-------------------------------| | | 4. | Inheritance, Override a Method Add a Method, Get Help from Parent with super | 2 | | K3(Ap) | Flipped
Classroom | Program
writing
Challenges | W3Schools | Spot Test, CIA
II | | | 5. | In self Defense
Get and Set
Attribute Values
with Properties | 2 | 1 | K4(An) | Simulation | Inquiry
based
learning | YouTube
Tutorials | Online Quiz,
CIA II | | | 6. | Name Mangling
for Privacy,
Method Types,
Duck Typing,
Special
Methods,
Composition | 2 | | K6(C) | Demonstration | Join Task,
Brain
storming | Pycharm | Task
Evaluation,
CIA II | | IV | Datatypes | and Web | | | | | | | | | | 1. | Data Types: Text Strings Binary Data, Storing and Retrieving Data:File
Input /Output | 2 | 1 | K3(Ap) | Demonstrative,
Problem Solving | Demonstrati
on | You tube lecture videos | Slip Test, CIA
II | | | 2. | Structured Text | 2 | 1 | | Inquiry based | Interactive | NPTEL | Online Quiz, | | | | Files ,
Structured
Binary Files | | | | learning | PPTs | video
lectures | CIA II | |---|-----------|--|---|---|--------|-------------------------------|---|--|-------------------------------------| | | 3. | Relational Databases, No SQL Data stores | 2 | | K3(Ap) | Lecture cum
Demonstration | Query
Formation
Activities | Geek for
Geeks, | Assignment,
CIA II | | | 4. | Web: Web Clients Web Servers | 3 | 1 | K3(Ap) | Activity-Based | Exercise
Solving
Practice,
Brainstormi | Analytics
vidya, geek
for geeks | Task Sheet
Evaluation,
CIA II | | | 5. | Web Services and Automation | 3 | | K4(An) | Simulation,
Chalk and Talk | Exercises | You tube videos | Slip test, CIA
II | | V | Systems a | and Networks | | | | | | | | | | 1. | Systems: Files Directories, Programs and Processes Calendars and Clocks | 2 | 1 | K2(U) | Lecture Method | Peer
Teaching | Videos
lectures,
geek for
geeks | Quiz – Near
Pod, CIA II | | | 2. | Networks:Patter ns, Internet Services, The Publish Subscribe Model TCP/IP Sockets, Zero MQ | 2 | 1 | K2(U) | Demonstrative | Data Type
Exercise | You tube videos | MCQ Test,
CIA II | | | 3. | Concurrency: | 3 | 1 | K3(Ap) | Problem Solving | Activity, | Analytics | Lab | | | Queues Processes Threads Green Threads and event Twisted Redis | | | | Brainstormi
ng, peer
activity | vidya
Tutorials | Evaluation,
CIA II | |----|--|---|------------------|----------------------|--|------------------------------------|------------------------| | 4. | Web Services
and APIs
Remote
Processing Big
Fat Data and
Map Reduce | 2 | K4(An) | Hands-on
Practice | Scenario
based tasks | Video
Demos,
Sample
Codes | Slip Test, CIA
II | | 5. | Working in the Clouds | 3 | K2(U),
K3(Ap) | Blended
Learning | Group
discussion,
Peer
teaching | PDF
Guides,
Blog
Articles | Online Quiz,
CIA II | Course Focussing on Employability/ Entrepreneurship/ Skill Development: Skill Development Activities (Em/ En/SD): 1. Develop programs using Object Oriented Concepts. 2. Creating interactive web pages using forms. Course Focussing on Cross Cutting Issues(Professional Ethics/ Human Values/Environment Sustainability/ Gender Equity): Nil Activities related to Cross Cutting Issues: Nil #### Assignment: - 1. Different data types in Python and a comparison with C and C++ data types (Submission date 25.07.2025) - 2. Compare two Files line by line in Python. (Submission date 17.09.25) # Seminar Topic: - 1. Generators - 2. Concurrency Control | San | nple questions (1 | minimum one questio | n from each unit) | | | |-----|-------------------|-------------------------------|--------------------------|-----------------------------|--------------------------| | | | | Par | rt A (1 Mark) | | | 1. | | • | n identifier. (K1-R,CO | | | | | a) 32 | b)16 | c)128 | d) No fixed length | | | 2. | Which of the fo | • | ception handling in Pyth | | | | | a) try | b) except | c) finally | d) All the above | | | 3. | • 1 | | when passed into a fun | , , | | | | a) List | b) Tuple | c) Dictionary | d) None | | | 4. | | . | ot reversed keyword in | . , , | | | _ | a) Class | b) goto | c) and | d) None | (IVA IV COA) | | 5. | • • • | • | | me using a construct called | (K2-U,CO2) | | | a) lambda | b)pi | c) anonymous | d) None | | | | | | | t B (6 Marks) | | | 1. | Write the featur | res of Python. (K2-U,C | CO1) | | | | 2. | Explain why Py | thon is considered as a | n Interpreted Language | e. (K2-U,CO1) | | | 3. | Write notes on | Name Mangling for Pr | ivacy. (K3-An,CO2) | | | | 4. | Write a Python | program to display Fib | onacci sequence for n t | terms. (K3-An,CO2) | | | 5. | What do you ur | nderstand about Redis? | (K4-Ap,CO5) | | | | | | | Part | t C (12 Marks) | | | 1. | Explain about to | uples, lists and dictiona | aries in Python with exa | ample. (K3-Ap,CO2) | | | 2. | Explain in detail | il about Exception Han | dling. (K4-An,CO2) | | | | 3. | Elaborate Inher | itance concepts with ex | kamples. (K4-An,CO3) | | | | 4. | Describe Web S | Services and automation | n. (K5-Ev,CO4) | | | | 5. | Write in detail a | about TCP/IP model. (I | K6-C,CO5) | | | | | | | | | | | | Head of the | e Department | | | Course Instructor | Dr. V. S. Harilakshmi Dr. V. S. Harilakshmi Class : I M.Sc Computer Science Title of the Course : ELECTIVE LAB COURSE I: Python Programming Lab Semester : I Course Code : SP231EP1 | Course Code | T | Т | Р | C | Credits | Inst. Hours | Total Hours | | Marks | | |--------------------|---|---|---|---|---------|-------------|--------------------|-----|----------|-------| | Course Code | L | 1 | Г | 3 | Credits | mst. mours | | CIA | External | Total | | SP231EP1 | | | 3 | - | 2 | 3 | 45 | 25 | 75 | 100 | #### **Prerequisite:** Basics of any OO Programming Language. #### **Learning Objectives:** - 1. Presents an overview of elementary data items, lists, dictionaries, sets and tuples - 2. To understand and write simple Python programs. #### **Course Outcomes** | | Course outcomes | | |-------|---|--------| | On th | ne successful completion of the course, student will be able to: | | | 1 | write programs in Python using OOPS concepts | K1, K2 | | 2 | to understand the concepts of File operations and Modules in Python | K3, K4 | | 3 | implementation of lists, dictionaries, sets and tuples as programs | K4, K5 | | 4 | to develop web applications using Python | K5, K6 | | 5 | develop the programs using polymorphism | K6 | K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate; K6- Create # **Teaching Plan** # **Total Contact hours: 45 (Including Practical Classes and Assessments)** | Unit | Topic | Teaching
Hours | Assessment
Hours | Cognitive level | Pedagogy | Student
Centric
Method | E-Resources | Assessment/
Evaluation
Methods | |------|-------------------------|-------------------|---------------------|-----------------|----------------|------------------------------|--------------|--------------------------------------| | 1 | Elementary data items, | 4 | 1 | K2 | Demonstration | Pycharm | Matlab Image | Lab Task | | | lists, dictionaries and | | | | Practice-Based | Execution | Processing | Evaluation | | | tuples | | | | | Practice | toolbox | | | | | | | | | | Youtube videos | | |---|--------------------------------------|---|---|----|---|--|--|--------------------------------------| | 2 | Histogram Equalization | 4 | | К3 | Problem
Solving,
Hands-on
Learning | Algorithm
decoding
task, Pair
Programming | Self made
Youtube
videos | Test, Viva | | 3 | Image Restoration | 4 | 1 | К3 | Activity-Based | Visual
Analysis
Activities | NPTEL | Output Analysis | | 4 | Image Filtering | 4 | | К3 | Demonstrative | Peer programming | Tutorials point | Slip Test,
Student
Explanation | | 5 | Edge detection using Operators | 4 | 1 | K4 | Simulation | Collaborative coding | Youtube videos | Code
Debugging
Evaluation | | 6 | Image Compression | 4 | | K4 | Problem
Solving | Algorithm
decode,
Problem
Solving | Matlab
Central
practical
examples | Code Review,
Oral Test | | 7 | Image Subtraction | 4 | 1 | K3 | Hands-on practice | Student explanation of differences | Geeks for geeks | Output-Based
Evaluation | | 8 | Boundary Extraction using Morphology | 4 | | K5 | Practice-Based | Problem
Solving
exercise | YouTube
Tutorials | Final Output
Verification | | 9 | Image Segmentation | 4 | 1 | K6 | Demonstration | Mini project
in pairs | You tube videos | Oral questioning, demo execution verification | |----|-----------------------------------|---|---|----|---------------|--------------------------|-----------------|---| | 10 | Dynamic and interactive web pages | 4 | | | | | | | Course Focussing on Employability/ Entrepreneurship/ Skill Development: Employability, Skill Development Activities (Em / En /SD): Hands on Training, Project Course Focusing on Cross Cutting Issues (Professional Ethics/ Human Values/Environment Sustainability/ Gender Equity): NIL **Environment Sustainability activities related to Cross Cutting Issues: NIL** #### Sample questions - 1. Write a program to implement elementary data items, lists, dictionaries and tuples. - 2. Write a program to implement conditional branches - 3. Write a program to implement loops. - 4. Write a program to implement functions. - 5. Write a program to implement Exceptional handling. - 6. Write a program to implement inheritance. - 7. Write a program to implement polymorphism. - 8. Write a program to implement file operations. - 9. Write a program to implement modules. - 10. Write a program to create dynamic and interactive web pages using forms. **Head of the Department** **Course Instructor** Dr. V. S. Harilakshmi Dr. V. S. Harilakshmi Class : I M.Sc. Computer Science Title of the Course : Elective Course II:c) Critical Thinking, Design Thinking and Problem Solving Semester : I Course Code : SP231EC6 | Course Code | L T P S Credits | | Credits | Inst. Hours | Total | Marks | | | | | |-------------|-----------------|---|---------|-------------
-------|-------|-------|-----|----------|-------| | | | | | | | | Hours | CIA | External | Total | | SP231EC6 | 5 | ı | _ | _ | 3 | 5 | 75 | 25 | 75 | 100 | # **Learning Objectives:** 1. Learn critical thinking and its related concepts. 2. Learn design thinking and its related concepts. 3. Develop thinking patterns, problem-solving and reasoning skills. #### **Course Outcomes** | | On the successful completion of the course, students will be able to: | | |---|---|-------| | 1 | Understand the concepts of critical thinking and its related terminology. | K1,K2 | | 2 | Focus on the development of critical thinking and problem-solving skills. | K2,K3 | | 3 | Apply design thinking in solving real-world problems. | K3,K4 | | 4 | Make decisions and take actions based on logical analysis. | K4,K5 | | 5 | Analyze thinking patterns and reasoning in real-time scenarios. | K5,K6 | K1 - Remember; K2 - Understand; K3- Apply; K4 - Analyze; K5 - Evaluate; K6 - Create # Teaching plan Total Contact hours: 75 (Including lectures, assignments and tests) | Unit | Module | Торіс | Teaching
Hours | Assessment
Hours | Cognitive level | Pedagogy | Student
Centric
Method | E-Resources | Assessment/
Evaluation
Methods | |------|------------|--|-------------------|---------------------|-----------------|---|---------------------------------|---|---| | I | Critical T | hinking | | | | | | | | | | 1 | Definition, Conclusions and Decisions, Beliefs and Claims | 2 | 1 | K1(R),
K2(U) | Lecture with
Concept
Mapping | Think-
Pair-Share | Stanford CT
Tools | Quiz, Self-check
worksheet,
CIA I | | | 2 | Evidence – finding, evaluation, Inferences | 2 | | K1(R),
K5(E) | Visual
Explanation,
Diagram-
based
Analysis | Guided
Practice | YouTube
Critical
Thinking
Series | Diagram
interpretation
quiz,CIA I | | | 3 | Facts – opinion,
probable truth,
probably false,
Venn diagram | 2 | | K2(U) | Case-Based
Teaching | Case
Study
Discussion | TEDx, NPTEL | Case Study
Rubric,CIA I | | | 4 | Applied critical thinking: Inference, Explanation, Evidence, Credibility, Two Case Studies | 3 | 1 | K4(A),
K5(E) | Collaborative
Analysis,
Case Study
Method | Group
Work,
Case
Study | Online Case
Library | Peer Review and
Reflection Log,
CIA I | | | 5 | Critical thinking and science, critical | 3 | 1 | K3(Ap), | Inquiry-
Based | Think
Aloud | Coursera | Analytical
Writing Task,CIA | | | | evaluation, self assessment. | | | K5(E) | Learning | Exercises,
Seminar | | I | |-----|-----------|---|---|---|-----------------|-----------------------------------|------------------------------------|---------------------------|---| | II | Design Th | ninking | | | | 1 | | l | 1 | | | 1 | Introduction,
Need of Design
Thinking | 2 | | K1(R),
K2(U) | Problem Framing Lecture | Real-
World
Mapping | IDEO Toolkit | Problem Identification Worksheet, CIA I | | | 2 | Problem to question - design thinking process, | 2 | 1 | K2(U) | Storyboardin g and Flowcharting | Collaborat
ive Mind
Mapping | Coursera Design Thinking | Process Mapping
Assignment, CIA | | | 3 | Traditional Problem Solving versus Design Thinking | 2 | | K3(Ap) | Visual
Learning &
Templates | Group
Design
Cycle | LinkedIn
Learning | Process Evaluation Rubric, CIA I | | | 4 | Phases of Design Thinking, problem exploration, Stake holder assessment | 3 | 1 | K4(A) | Role-Play
Activities | Stakehold
er Role
Simulation | HBR Cases | Scenario-based
Role Cards, CIA I | | | 5 | Design thinking for manufacturers, smart Idea to implementation. | 3 | 1 | K4(A)&
K5(E) | Structured
Problem
Solving | Seminar | MIT
OpenCourseW
are | Implementation Plan Presentation,CIA I | | III | CASE ST | | | | • | | | | | | | 1 | Thinking to confidence, fear management | 3 | 1 | K2(U),
K3(A) | Reflective
Pedagogy | Self-
Awareness
Tasks | TED Talks | Reflective Journal
Submission,CIA I | | | 2 | Duty Vs
Passion, Team | 2 | | K3(Ap), | Team Exercises & | Group | NPTEL Soft | Team Rubric | | | | management | | | K4(A) | Tools
Exploration | Project | Skills | Evaluation,CIA I | |----|-----------|---|---|---|------------------|---|--------------------------------|----------------------------------|---| | | 3 | Tools for
Thinking,
Prototype design | 1 | | K4(A) | Product-
Based
Learning | Rapid
Prototypin
g | Stanford
Design Lab | Prototype Demo
& Peer Feedback,
CIA I | | | 4 | Relevance of Design and Design Thinking in engineering, human centered design | 3 | 1 | K4(A) | Interdisciplin
ary
Discussion | Industry Applicatio n Examples | Case Study,
Seminar | Application Notes
Review, CIA II | | | 5 | Case study:
apply design
thinking in
problem. | 3 | | K4(A),
K5(E) | Flipped
Classroom,
Case Study
Method | Case
Study | EdX,
Casebooks | Case Evaluation
Checklist, CIA II | | IV | Problem s | solving | | • | | 1 | | 1 | | | | 1 | Problem definition, problem solving methods | 2 | | K2(U),
K3(Ap) | Conceptual Demonstration , Group Discussion | Group
work | Khan
Academy | Map, CIA II | | | 2 | selecting and using information, data processing | 3 | 1 | K3(Ap) | Data-Based
Learning | Data Puzzle Activities | MIT OCW | Data Interpretation Tasks,CIA II | | | 3 | Solution
methods, solving
problems by
searching | 2 | | K3(Ap) | Simulation & Visualization | Algorithm ic Solving | Stanford
Algorithms
Course | Problem Solving
Drill, CIA II | | | 4 | Recognizing patterns, spatial | 2 | 1 | K4(A) | Visual
Thinking | Diagram
Solving | Design
Thinking | Spatial Skills
Assessment, CIA | | | | necessity and sufficiency | | | | Strategy | | Resources | II | |---|---------|--|---|---|-----------------|----------------------------------|-----------------------------|-----------------------------|--| | | 5 | Closing and using models, making choice and decisions | 3 | 1 | K5(E) | Decision
Tree
Mapping | Role-
Based
Scenarios | Seminar | Decision Making
Rubric, CIA II | | V | Problem | solving | | • | | • | | • | • | | | 1 | Deductive and
hypothetical
reasoning | 1 | 1 | K5(E) | Logical
Frameworks | Guided
Logic
Puzzles | Khan
Academy | Reasoning Skills
Test, CIA II | | | 2 | Computational problem solving, generating, implementing | 3 | | K3(Ap) | Coding for Logic | Flowchart
to Code | HackerRank | Code & Logic
Evaluation, CIA II | | | 3 | Evaluating solutions, interpersonal problem solving | 2 | | K4(A),
K5(E) | Discussion-
Based
Learning | Role Play
Challenge | Coursera Soft
Skills | Peer Evaluation,
CIA II | | | 4 | Advanced problem solving: Combining skills – using imagination, developing models, Carrying out investigations, Data analysis and inference. | 4 | 1 | K5(E) | Project-
Based
Thinking | Seminar | Design
Thinking
Tools | Prototype & Explanation Submission, CIA II | | 5 | Graphical | 2 | 1 | K5(E), | | | | | |---|--|---|---|--------|----------------------------|------------------------------|------------------------------|---| | | methods of solution, Probability, tree diagrams and decision trees | | | K6(C) | Visualization & Simulation | Group
Mapping
Exercise | Decision-
Making
MOOCs | Tree Diagram Interpretation Test,CIA II | Activities (Em/En/SD):Case studies,Role-play Course Focussing on Employability, Problem Solving, Analytical and Design Thinking Skills Assignment: Two CaseStudies, Case study: apply design thinking in Problem (Last date to submit – 15-08-2025) Seminar Topics: Self Assessment, Smart Idea to implementation, Human Centered design, Making choice and Decisions, Data Analysis and Inference # Sample questions Part A (1 mark) - 1. Which of the following is an element of critical thinking?(K2 U, CO 1) - a) Memorizing facts - b) Avoiding evidence - c) Evaluating arguments - d) Copying information - 2. Which phase of design thinking involves idea generation?(K3 Ap, CO-2) - a) Define - b) Empathize - c) Ideate - d) Prototype - 3. Which of the following best describes human-centered design?(K4 A, CO 3) - a) Focuses on financial viability - b) Centers on user needs and experiences - c) Based only on technical feasibility - d) Ignores user feedback - 4. Pattern recognition in problem solving helps with: (K4 A, CO 4) - a) Memorizing codes - b) Identifying recurring solutions - c) Guessing randomly - d) Avoiding structured thinking - 5. In a decision tree, branches represent: (K5 E,CO 5) - a) Unrelated events - b) Sequential memory steps - c) Possible choices or outcomes - d) Dead-end loops ## Part B (6 Marks) - 1..Distinguish between belief and inference with an example. (K2-U, CO1) - 2. Explain how stakeholder analysis helps in Design Thinking. (K3-Ap, CO2) - 3. Write a note on fear management and team motivation. (K3-Ap, CO3) - 4. Describe the use of models in problem solving. (K4-An, CO4) - 5. What is the role of decision trees in evaluating alternatives? (K5-E, CO5) #### Part C (12 Marks) - 1. Explain Venn diagrams
and their role in analyzing claims. (K2-U, CO1) - 2. Describe the five phases of Design Thinking with suitable examples. (K3-Ap, CO2) - 3. Analyze a case study applying human-centered design. (K4-An, CO3) - 4. Explain pattern recognition and spatial reasoning with real-life cases. (K4-An, CO4) - 5. Discuss how problem-solving can be enhanced through imagination and modeling. (K6-Cr, CO5) # **Head of the Department** Dr. V.S. Harilakshmi Class : II M. Sc Computer Science Title of the Course : Core Course V: Digital Image Processing Semester : III Course Code : SP233CC1 | Course Code | L | T | P | S | Credits | Inst. Hours | Total | | Marks | | |--------------------|---|---|---|---|---------|-------------|-------|-----|----------|-------| | | | | | | | | Hours | CIA | External | Total | | SP233CC1 | 6 | - | - | - | 5 | 6 | 90 | 25 | 75 | 100 | # **Objectives** 1. To learn basic image processing techniques for solving real problems. 2. To learn image compression and Segmentation procedures. | | Upon completion of this course, the students will be able to: | | |---|--|-------------------| | 1 | understand the fundamentals of Digital Image Processing | K2 (U) | | 2 | understand the mathematical foundations for digital image representation, image acquisition, image transformation, and image enhancement | K2(U) | | 3 | apply, design and implement and get solutions for digital image processing problems | K3(Ap),
K4(An) | | 4 | apply the concepts of filtering and segmentation for digital image retrieval | K3(Ap),
K5(E) | | 5 | explore the concepts of Multi-resolution process and recognize the objects in an efficient manner | K5(E),
K6(C) | # Teaching plan # **Total Contact hours: 90 (Including lectures, assignments and tests)** | Unit | Module | Торіс | Teaching
Hours | Assessment
Hours | Cognitive
level | Pedagogy | Student
Centric
Method | E-
Resources | Assessment/
Evaluation
Methods | |------|------------|--|-------------------|---------------------|--------------------|--|--|--|---| | I | Introducti | ion | | | | 1 | I | | | | | 1 | What is Digital image processing – the origin of DIP Examples of fields that use DIP | 2 | 1 | K2 (U) | Lecture
Instruction,
Explanation
with
Examples | Lecture, Group
Discussion,
Brainstorming | NPTEL
Lectures,
Self made
You-Tube
videos,
PPTs | MCQs, Oral
Quiz, CIA I | | | 2 | Fundamentals steps in DIP – Components of an image processing system | 3 | | K3 (Ap) | Conceptual
Teaching,
Illustrative
Examples | Peer
Explanation,
Mind Mapping | Tutorials point, Course Handouts, Videos | Short Essay,
Concept
Mapping,
CIA 1 | | | 3 | Digital Image Fundamentals: Elements of Visual perception | 3 | 1 | K4 (An) | Chalk & Talk, Visual Pedagogy, Tabular Comparison | Interactive Discussion, Case Analysis | Geeks for
Geeks | Conceptual
Worksheet,
Slip Test,
CIA 1 | | | 4 | Light and the electromagnetic spectrum – Image sensing and acquisition | 2 | | K3 (Ap) | Interactive PPT, Tabular Comparison | Lecture and demonstration | Geek for
Geeks,
NPTEL
Videos | Quiz,
Diagram
Analysis,
CIA I | | | 5 | Image sampling and Quantization | 2 | 1 | K3 (Ap) | Blended
Learning,
Inquiry
based | Lecture with PPT Interactive Sessions | Self made
You tube
videos | Assignment,
CIA I | | | | | | | learning | | | | |----------|---|---|--|--|--|---|--|--| | 6 | Some Basic relationship between Pixels, Linear and Nonlinear operations. | 3 | | K4 (An) | Flipped
Classroom,
PPT | Interactive
Demonstration | Self made
You Tube
Video
Tutorials,
Geeks for
Geeks | Quiz,
Assignment,
CIA 1 | | Image En | hancement | | | | | | | | | 1 | Image Enhancement in the spatial domain: Background | 2 | 1 | K3 (Ap) | Chalk and
Talk, Group
Discussion | Interactive
PPT | Analytics vidya, Tutorial point | Oral Quiz,
CIA 1 | | 2 | Basic Gray level Transformations – Histogram Processing | 2 | | K4 (An) | Step-by step
Algorithm
Instruction | Hands on practice | Video
lecture | Assignment,
Quiz, CIA I | | 3 | Histogram Equalization | 2 | 1 | K5 (E) | Interactive
Software
Demonstrati
on | Software lab practice, Group Discussion | Self made
You tube
videos | Lab
evaluation,
CIA I | | 4 | Enhancement using Arithmetic / Logic operations: Image Subtraction - Image Averaging | 3 | | K3 (Ap) | Interactive PPT, Real- World Application: Discussion | Use case
demonstration,
Pair
programming | Self made
You tube
videos | Practical
Test, Output
Review,
CIA I | | 5 | Basics of spatial filtering, Smoothing spatial filters: | 3 | 1 | K2 (U) | Comparativ
e analysis
with
examples | Visual
Comparison | Geek
forgeeks | Assignment,
CIA I | | 6 | Smoothing spatial filters: Smoothing Linear Filters – Sharpening spatial filters, Combining spatial enhancement methods | 3 | | K3 (Ap) | Project
based
Learning | Problem Solving exercise, Lab Task division | Real time
Analysis
video
lecture | Lab exercise output
evaluation, CIA I | | | 1 2 3 4 5 6 | relationship between Pixels, Linear and Nonlinear operations. Image Enhancement Image Enhancement in the spatial domain: Background Background Basic Gray level Transformations – Histogram Processing Histogram Processing Histogram Equalization Financement using Arithmetic / Logic operations: Image Subtraction - Image Averaging Basics of spatial filtering, Smoothing spatial filters: Smoothing spatial filters: Smoothing spatial filters, Combining spatial enhancement | relationship between Pixels, Linear and Nonlinear operations. Image Enhancement Image Enhancement in the spatial domain: Background 2 Basic Gray level Transformations — Histogram Processing 3 Histogram Equalization 2 Enhancement using Arithmetic / Logic operations: Image Subtraction - Image Averaging 5 Basics of spatial filtering, Smoothing spatial filters: 6 Smoothing spatial filters: 6 Smoothing spatial filters — Sharpening spatial filters, Combining spatial enhancement methods | relationship between Pixels, Linear and Nonlinear operations. Image Enhancement Image Enhancement in the spatial domain: Background 2 Basic Gray level Transformations — Histogram Processing 3 Histogram Equalization 4 Enhancement using Arithmetic / Logic operations: Image Subtraction - Image Averaging 5 Basics of spatial filtering, Smoothing spatial filters: 6 Smoothing spatial filters: 6 Smoothing spatial filters: Smoothing Linear Filters — Sharpening spatial filters, Combining spatial enhancement methods | relationship between Pixels, Linear and Nonlinear operations. Image Enhancement Image Enhancement in the spatial domain: Background Background Basic Gray level Transformations — Histogram Processing Histogram Processing Histogram Equalization Enhancement using Arithmetic / Logic operations: Image Subtraction - Image Averaging Basics of spatial filtering, Smoothing spatial filters: Smoothing Linear Filters — Sharpening spatial filters, Combining spatial enhancement methods RK3 (Ap) K3 (Ap) K3 (Ap) | relationship between Pixels, Linear and Nonlinear operations. Image Enhancement Image Enhancement in the spatial domain: Background 2 1 K3 (Ap) Chalk and Talk, Group Discussion | relationship between Pixels, Linear and Nonlinear operations. Image Enhancement | relationship between Pixels, Linear and Nonlinear operations. Flipped Classroom, PPT Pripped PPT Pripped Classroom, PPT PPT Pripped Classroom, PPT | | | 1 | A model of the Image | 3 | 1 | K2 (U) | Real-World | | YouTube | Problem | |----|---------|-------------------------|---|---|-----------------|--------------------------|---------------|-----------------|---------------------| | | | Degradation / | | | | Analogy, | PPT, Visual | Videos, | Analysis | | | | Restoration Process | | | | Group | Analysis | Simpli | Task, MCQ | | | | | | | | Discussion | | learn, | Test | | | 2 | Noise models – | 1 | 1 | K3(Ap) | Analytical | Demonstration | Geeks for | Short | | | | Restoration is the | | | | teaching | | Geeks, you | Tests/Quizze | | | | process of noise only | | | | with | | tube videos | s: | | | | | | | | examples | | | Conceptual | | | | | | | | | | | and output- | | | | | | | | | | | based, | | | | | | | | | | | Problem | | | | | | | | | | | solving | | | | | | | | | | | exercises, | | | | | | | | | | | CIA II | | | | Spatial Filtering – | 2 | 1 | K4 (An) | | | | Output with | | | 3 | Periodic Noise | | | | Live | Hands on | Video | Logic | | | 3 | reduction by frequency | | | | filtering | filtering | demo | Justification, | | | | domain filtering – | | | | demo | practice | dellio | CIA II | | | | Linear, Portion. | | _ | | | | | | | | 4 | Invariant Degradations | 3 | | K5 (E) | Step-By- | *** 1 1 | Analytics | ~11 | | | | – Estimating the | | | | Step | Worksheet | vidya, | Slip test, | | | | degradation function | | | | Algorithm | evaluation | Video | CIA II | | | | T (*1, * | 2 | 1 | 172 (4) | Instruction | | lectures | D 11 | | | 5 | Inverse filtering – | 2 | 1 | K3 (Ap) | 3371. 24 - 1 1 | Group | Analytics | Problem | | | | Minimum mean square | | | | White board illustration | calculation, | vidya,
Video | solving | | | | Error Filtering | | | | illustration | Concept quiz | | exercise,
CIA II | | | 6 | Constrained least | 3 | 1 | K4 (An) | | | lectures | CIA II | | | U | squares filtering, | 3 | 1 | N4 (All) | Application | | Analytics | | | | | Geometric mean filter – | | | | based | Real Case | vidya, | Quiz, CIA II | | | | Geometric mean men – | | | | teaching | study | Video | Quiz, CIA II | | | | Transformations. | | | | teaching | | lectures | | | IV | Dynamic | Programming | | | | | | | | | | 1 | Image Compression | 1 | 1 | K2 (U) | Lecture and | Recursive to | Interactive | 1.600 | | | - | Fundamentals-Coding | - | | | Visual Aids | Iterative | PPT, Open | MCQ test, | | | | Redundancy – Inter | | | | (diagram) | Comparison, | CV demo | CIA II | | | | pixel Redundancy | | | | | Code
Walkthrough | | | |---|-----------|---|---|---|---------|--|---|--|---| | | 2 | Image compression models: The source encoder and decoder | 2 | | K2 (U) | Computatio nal Thinking | Step-by-Step
Problem
Solving in
Groups | NPTEL video lectures | Slip test,
CIA II | | | 3 | Channel Encoder and Decoder | 2 | 1 | K3 (Ap) | PPT | Discussion | Geek for
Geeks | Quiz, CIA II | | | 4 | Elements of Information Theory - Measuring Information - The Information Channel | 3 | | K2 (U) | Lecture with PPT Interactive Sessions | Brain storming | Geek for geeks | Oral
Questioning,
CIA II | | | 5 | Fundamental Coding Theorems – Error Free compression – Visible length Coding - LZW Coding | 2 | 1 | K4 (An) | Lecture using videos | Problem solving task | Youtube videos | Problem solving exercises, CIA II | | | 6 | Lossy compression-
Lossy Predictive
Coding | 2 | 1 | K6 (C) | Video
lecture and
discussion | Problem solving | Youtube videos | Problem solving exercises, CIA II | | | 7 | Image compression standards | 2 | | K5 (E) | Demonstrati
on | Task
Assignment
Simulations | Geek for geeks | Questioning,
CIA II | | V | Image Seg | gmentation | | | | 1 | <u> </u> | | | | | 1 | Segmentation - Detection and Discontinuities | 2 | 1 | K2 (U) | Develop
Practical
Programs | Simulation output analysis | NPTEL,
Self made
Lecture
Videos | Matlab Visualizatio n output evaluation, CIA II | | | 2 | Point detection Line
Detection - Edge
Detection | 2 | | K4 (An) | Case
Studies,
Group
Discussions | Hands on analysis and discussion | NPTEL video lectures | Scenario
Analysis,
CIA II | | 3 | Edge Linking and Boundary deduction – Local Processing- Global Processing | 2 | 1 | K5 (E) | Lecture
with PPT | Hands on analysis and discussion | NPTEL video lectures | Practical simulation, CIA II | |---|---|---|---|---------|-------------------------------------|--|---|-----------------------------------| | 4 | Region-Based
segmentation – Basic
Formulation | 2 | | K3 (Ap) | Interactive PPT | Hands on
Demonstration | You tube videos | Problem Solving exercises, CIA II | | 5 | Region Growing, Splitting and Merging | 2 | 1 | K3 (Ap) | Demonstrati
on with
examples. | Problem-
solving
Sessions,
Discussion | Youtube videos | Practical Output review, CIA II | | 6 | Color fundamentals-
color models- RGB
color model | 2 | 1 | K6 (C) | Demonstrati
on with
examples. | PPT discussion | Analytics
vidya
tutorials | Questioning,
CIA II | | 7 | CMY and CMYK color models | 2 | | K6 (C) | Lecture
using PPT | PPT discussion, brain storming | Analytics vidya tutorials, Visualisati on tools | Quiz, CIA II | Course Focussing on Employability/ Entrepreneurship/ Skill Development: Employability, Skill Development Activities (Em/ En/SD): 1. Employability: Image sampling and Quantization, Mini project using COVID – 19 dataset 2. Skill Development: Implementing Histogram Equalization to Enhance Image Contrast using MATLAB. Assignment: Basics of Spatial Filtering, Image Compression Models, Seminar Topic: Spatial Enhancement Methods, Channel Encoder and Decoder # **Sample questions** # Part A (1 Mark) | 1. W | That is the primary objective of Digital Image P | rocessing? (K2(U), C | O1) | |------|---|--------------------------|---| | a) | To create new images | | | | b) | To improve the quality of an image or extrac | t useful information | | | c) | To store images efficiently | | | | d) | To compress images without any loss | | | | 2. W | Thich technique is used to improve the contrast | of an image in the spat | tial domain? (K3(Ap), CO2) | | a) | Fourier Transform | b) Histogram Equaliz | ration | | c) | Edge Detection | d) Noise Reduction | | | 3. | Which filter is specifically designed to minimiz | ze the mean square erro | or between the restored and the original image? (K4(An), CO3) | | a) | Median Filter | b) Gaussian Filter | | | c) | Minimum Mean Square Error (MMSE) Filter | d) Sobel Filter | | | 4. W | which of the following is a lossless image comp | ression technique? (K3 | 3(Ap), CO5) | | a) | JPEG b) LZW Coding | c) MPEG | d) JPEG 2000 | | 5. W | Thich method is commonly used for detecting e | dges in an image? (K3 | (Ap), CO4) | | a) | Region Growing | b) K-means Clusterin | g | | c) | Canny Edge Detection | d) Principal Compone | ent Analysis (PCA) | | | | Part B (| 6 Marks) | | 1. E | xplain the fundamental steps involved in a digit | tal image processing sy | vstem.
(K2(U), CO1) | | 2. D | escribe the process of histogram equalization. I | How does it improve the | ne contrast | | of | f an image? Illustrate with an example. (K3(Ap |), CO2) | | | 3. D | iscuss the different types of noise that can affect | et digital images. (K4(A | An), CO3) | 4. What are the differences between lossless and lossy image compression techniques. (K4(An), CO5) 5. Explain the concept of edge detection in image segmentation. (K3(Ap), CO4) # Part C (12 Marks) - 1. Discuss the components of an image processing system in detail. Explain how each component contributes to the overall functioning of the system. (K2(U), CO1) - 2. Explain in detail the various techniques used for image enhancement in the spatial domain. (K3(Ap), CO2) - 3. Describe the image degradation/restoration process model. (K4(An), CO3) - 4. Elaborate on the fundamentals of image compression. (K5(E), CO5) - 5. Discuss color fundamentals and color models. (K6(C), CO5) **Head of the Department** Dr. V. S. Harilakshmi **Course Instructor** Dr. V. S. Harilakshmi Class : II M.Sc. Computer Science Title of the Course : Core Course VI: Cloud Computing Semester : III Course Code : SP233CC2 | Course | L | Т | P | S | Credits | Inst. Hours | Total Hours | | Marks | | |----------|---|---|---|---|---------|-------------|-------------|-----|----------|-------| | Code | | | | | | | | CIA | External | Total | | SP233CC2 | 6 | _ | _ | _ | 5 | 6 | 90 | 25 | 75 | 100 | # **Learning Objectives:** 1. Gain knowledge on cloud computing, cloud services, architectures and applications. 2. Enable the students to learn the basics of cloud computing with real time usage. | | On the successful completion of the course, students will be ab | le to: | |---|---|--------| | 1 | Understand the concepts of cloud and its architecture | K1, K2 | | 2 | Use and analyse the architecture and services of cloud | К3 | | 3 | Manage schedules, events and projects | K4 | | 4 | collaborate cloud for Event & Project Management | K5 | | 5 | Apply and create the cloud simulator tool sand virtual machines | K6 | Teaching plan Total Contact hours: 90 (Including lectures, assignments and tests) | Unit | Module | Торіс | Teaching
Hours | Teaching
Hours | Cognitive
level | Pedagogy | Student
Centric
Method | E-Resources | Assessment/
Evaluation
Methods | |------|-------------|---|-------------------|-------------------|--------------------|--|---|-------------------------|--------------------------------------| | I | Introductio | n | | | | 1 | ı | ı | | | | 1 | Beyond the desktop:An Introductionto Cloud Computing | 3 | 1 | K1 (U) | Lecture with
Visual Aids
such as PPT | Concept
Mapping. | Notes/Slides | Oral
Presentation | | | 2 | Workingof
Cloud
Computing | 2 | | K3(Ap) | Conceptual Demonstration | Inquiry-Based
Learning | Video
Lecture | Quiz | | | 3 | Companies in the Cloud, Essential characteristics | 2 | 1 | K2 (U) | Concept-based discussion, Problem-solving sessions using real-world applications | Collaborative
Learning,
Concept
Mapping | PowerPoint | Case
Discussion | | | 4 | Architectural Influences, Technological Influences,and Operational Influences | 3 | | K4(An) | Blended
Learning | Problem-Based
Learning, Case
Study Analysis | Youtube
Videos | Open book
Test | | | 5 | Cloud
Computing | 5 | 1 | K3 (Ap) | Concept-based discussion, | Problem solving | Online
Tutorials and | Assignments | | | | Security challenges: Security Policy Implementati on, Policy Types, and CSIRT | | | | Problem-solving sessions using real-world applications | | Notes | | |-----|---|---|-------------|-----|---------|--|---|---------------------------------------|-------------------------------| | II | | Cloud Architectu | re | | | | | | | | | 1 | Layers in Cloud
Architecture | 3 | 1 | K4(An) | Lecture using
Chalkand talk | Inquiry based
Learning | Interactive PPT | Class test | | | 2 | Software as a
Service
(SaaS):Features
and Benefits | 3 | | K3(Ap) | Computational thinking | Using computational techniques for solving problems | E-Content
(MS-Word) | Questioning in the class room | | | 3 | Platform as a
Service(PaaS):F
eatures and
Benefits | 2 | 1 | K3 (Ap) | Integrative
Teaching | Analyze problem situation | You tube
Video | Debates | | | 4 | Infrastructure as
a
Service(IaaS):Fe
atures and
Benefits | 2 | | K3 (Ap) | Reflective
Thinking | Skill based course | E-Content
(MS-Word) | Group
discussion | | | 5 | Cloud Deployment Models: Public, Private, Community, Hybrid | 3 | 1 | K3 (Ap) | Project Based | Practical | Using Cloud
server via
internet | Open book
exam | | | 6 | Pros and Cons
of Cloud
computing | 2 | | K4(An) | Case study method | Concept
Mapping | Powerpoint
Presentation | Oral Quiz | | III | | CloudComputing | gfor Everyo | one | | | | | | | | 1 | Cloud
Computingfor
the Family | 1 | 1 | K2 (U) | Collaborative
Learning | Group discussion | Notes and
Slides | Observation note | |----|---|--|-------|---|---------|--|---|--|---------------------| | | 2 | Centralizing Email Communications | 3 | | | Conceptual
Demonstration | Seminar | PPT | Presentation | | | 3 | Cloud
Computingfor
the Community | 2 | 1 | K3 (Ap) | Inquiry based approach | Analyze problem situation | Discussion
Forum(Googl
e class room) | Creative writing | | | 4 | Collaborating on
Schedules and
Group Projects | 3 | | K4 (An) | Coopeative
Learning,
Project based | Debates | PPT | Group
discussion | | | 5 | Cloud Computingfor Corporations: Managing Schedules, Projects, Contact Lists | 3 | 1 | K4 (An) | Problem Solving
Techniques | Problem based learning | Online
Tutorials | Oral Test | | | 6 | Collaborations-
Presenting and
accessing on the
road. | 3 | | K3 (Ap) | Flipped Class
room | Computational techniques for solving problems | You tube videos | Peer Review | | IV | | Using Cloud Serv | vices | | | | · • | | | | | 1 | Collaborating on
Calendars,
Schedules,and
Task
Management | 3 | 1 | K2 (U) | Lecture using
Chalkand talk | Powerpoint
Presentation | Using E-
Book | Asking
Questions | | | 2 | Exploring Online Scheduling andPlanning | 3 | | K3 (Ap) | Computational
Thinking | Project based | E-Content-
MS-Word | Debate | | | 3 | Collaborating on Event Management,Col laborating on Contact Management | 3 | 1 | K4 (An) | Demonstration | Assignment | Submit the assignment in Google Class Room | Online
Assignment | |---|---|---|---|---|---------|--|---------------------------|--|--| | | 4 | Collaborating on Project Management | 3 | | K5(E) | Problem-
solving | Collaborative
Learning | PPT | Class test | | | 5 | Collaborating on word processing, spreadsheets, and databases. | 3 | 1 | K3 (Ap) | Integrative
Teaching | Solving problems | Discussion in
Whatsapp
Poll | Online
assessment in
quiz
Questioning | | V | | Cloud Simulators | | | | | | | | | | 1 | CloudSim and GreenCloud Introduction to Simulator, understanding CloudSim simulator | 3 | 1 | K2 (U) | Lecture Method
using Chalkand
talk | Group
discussion | PPT | MCQ | | | 2 | CloudSim Architecture(Us er code, CloudSim, GridSim, SimJava) Understanding | 3 | | K2(U) | Conceptual
Demonstration | Project Based | MS-Word | Open Book
exam | | | 3 | Working Platformfor CloudSim,Introd uction to GreenCloud | 3 | 1 | K3 (Ap) | Problem-
solving | Practical | Solving
problem in
Cloud
Platform | To write a program for accessing cloud server | | | 4 | Basics of
VMWare-
Advantages of | 3 | | K4 (An) | Inquiry - Based | Group
Discussion | E-Content (MS-Word) | Slip test | | | VMware virtualization | | | | | | | | |---|---|---|---|---------|-------------------|------------------|--|---------------------| | 5 | Using Vmware workstation-creating virtual machines-understanding VM | 3 | 1 | K3 (Ap) | Case study method | Solving problems | Solving
problem in
Cloud
Platform | Group
Discussion | Course Focussing on Employability/ Entrepreneurship/ Skill Development: Activities (Em / En /SD): SkillDevelopment - 3. Applying clouds ervices forman aging personal and professional schedules. - 4. Creating and managing virtual machines using VMware. Course Focusing on Cross Cutting Issues (Professional Ethics/ Human Values/Environment Sustainability/ Gender Equity): - Environment Sustainability activities related to Cross Cutting Issues:- #### Assignments: - 1. Cloud Computing Security challenges(Last date to submit:14-07-2025) - 2. Collaborating on Event Management, Collaborating on Contact Management(Last date to submit : 05-09-2025) Seminar Topics: Pros and Cons of Cloud computing, Centralizing Email Communications, Collaborating on word processing, spreadsheets, anddatabases. ### Part A (1 mark) | 1. What type of cloud is design | gned for exclusive use | by a single organizati | on?(K4-An, CO-3) |
---------------------------------|---------------------------|--------------------------------------|----------------------------------| | a) Public Cloud | b)Private Cloud | c)Community Cloud | d)Hybrid Cloud | | 2. Identify the essential chara | cteristic of cloud comp | outing.(K2-U , CO-1) | • | | a) Scalability | b)Fixed Cost | c)Local Storage | d)Manual Configuration | | 3. Which cloud computing m | odel offers software ap | plications over the in | ternet?(K3-Ap, CO-2) | | a) Iaas | S b)PaaS c)SaaS | d) DaaS | | | 4. Which of the following is a | a benefit of using Platfo | orm as a Service(Paas | S)?(K2-U , CO-2) | | a)Complete co | ontrol overhardware | b)Reduced coding t | ime | | c)Physical sec | curity management | d)Unlimited datasto | rage | - 5. Name the simulator provides an environment for modeling and simulating cloud computing infrastructures?(K3-Ap, CO-5) - a)VMWare - b)Hyper-V - c)GreenCloud - d) CloudSim ## Part B (6 marks) - 1. Explain the working of cloud computing and its essential characteristics.(K4-An, CO-3) - 2. What are the benefits and features of Software as a Service (SaaS)? (K3-Ap, CO-2) - 3. Describe the different layers in cloud architecture and the irrespective functions.(K5-E, CO-2) - 4. Describe how cloud computing can be used for managing projects and schedules in a corporation. (K3-Ap, CO-3) - 5..Discuss with cloud simulators (K4-An, CO-5) # Part C (12 marks) - 1. Discuss the essential characteristics and Architectural influences of cloud computing. (K1-U, CO-1) - 2. Explain theconceptoflaaSindetail,includingitsfeatures,benefits,andtypicaluse(K3-Ap, CO-2) - 3. Analyse the use of cloud computing for the family and community. (K4-An, CO) - 4. Evaluate the collaborating on project management(K5-E, CO-4) - 5. Describe the Cloudsim Architecture and virtual machine (K6-C, CO-5) **Head of the Department** Dr. V. S. Harilakshmi **Course Instructor** Dr. F. Fanax Femy Class : II M.Sc Computer Science Title of the Course : CORE LAB COURSE III: Digital Image Processing using Matlab Semester : III Course Code : SP233CP1 | Course Code | т | Т | D | C | Cradita | Inst. Hours | Total Hours | | Marks | | |--------------------|---|---|---|---|---------|-------------|-------------|-----|----------|-------| | Course Code | L | 1 | F | 3 | Credits | mst. nours | | CIA | External | Total | | SP233CP1 | - | | 6 | - | 5 | 6 | 90 | 25 | 75 | 100 | # **Pre-requisite:** Basic Programming of Image Processing and introduction to MATLAB # **Learning Objectives:** - 1. To understand the basics of Digital Image Processing fundamentals, image enhancement and image restoration techniques - 2. To enable the students to learn the fundamentals of image compression and segmentation | On t | On the successful completion of the course, student will be able to: | | | | | | | | | |------|--|--------|--|--|--|--|--|--|--| | 1 | write programs in MATLAB for image processing using the techniques | K1, K2 | | | | | | | | | 2 | able to implement image enhancements and restoration techniques | K2, K3 | | | | | | | | | 3 | capable of using compression techniques in an Image | K3, K4 | | | | | | | | | 4 | able to manipulate the image and segment it | K4, K5 | | | | | | | | | 5 | able to implement the image processing techniques using MATLAB | K5, K6 | | | | | | | | K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate; K6- Create Teaching Plan Total Contact hours: 90 (Including Practical Classes and Assessments) | Unit | Торіс | Teaching
Hours | Assessment
Hours | Cognitive level | Pedagogy | Student
Centric
Method | E-
Resources | Assessment/
Evaluation
Methods | |------|---------------------------------|-------------------|---------------------|-----------------|---|--|--|--------------------------------------| | 1 | Image Enhancement
Techniques | 9 | 1 | K2 | Demonstration
Practice-Based | Matlab
Execution
Practice | Matlab Image Processing toolbox Youtube videos | Lab Task
Evaluation | | 2 | Histogram Equalization | 9 | 1 | К3 | Problem
Solving,
Hands-on
Learning | Algorithm
decoding task,
Pair
Programming | Self made
Youtube
videos | Test, Viva | | 3 | Image Restoration | 9 | 1 | К3 | Activity-Based | Visual
Analysis
Activities | NPTEL | Output Analysis | | 4 | Image Filtering | 9 | 1 | К3 | Demonstrative | Peer programming | Tutorials point | Slip Test,
Student
Explanation | | 5 | Edge detection using Operators | 9 | 1 | K4 | Simulation | Collaborative coding | Youtube videos | Code
Debugging
Evaluation | | 6 | Image Compression | 9 | 1 | K4 | Problem
Solving | Algorithm
decode,
Problem
Solving | Matlab
Central
practical
examples | Code Review,
Oral Test | | 7 | Image Subtraction | 9 | 1 | К3 | Hands-on practice | Student
explanation of
differences | Matlab
docs,
Geeks for
geeks | Output-Based
Evaluation | |---|--------------------------------------|---|---|----|-------------------|--|---------------------------------------|---| | 8 | Boundary Extraction using Morphology | 9 | 1 | K5 | Practice-Based | Problem
Solving
exercise | YouTube
Tutorials | Final Output
Verification | | 9 | Image Segmentation | 9 | 1 | K6 | Demonstration | Mini project in pairs | You tube videos | Oral questioning, demo execution verification | Course Focussing on Employability/ Entrepreneurship/ Skill Development: Employability, Skill Development Activities (Em / En /SD): Hands on Training, Project Course Focusing on Cross Cutting Issues (Professional Ethics/ Human Values/Environment Sustainability/ Gender Equity): NIL **Environment Sustainability activities related to Cross Cutting Issues: NIL** # **Sample questions** - 1. Write a program to implement Image enhancement Technique. - 2. Write a program to implement Histogram Equalization - 3. Write a program to implement image Restoration. - 4. Write a program to implement image Filtering. - 5. Write a program to implement Edge detection using Operators (Roberts, Prewitts and Sobels operators) - 6. Write a program to implement image compression. - 7. Write a program to implement image Subtraction - 8. Write a program to implement Boundary Extraction using morphology. - 9. Write a program to implement image Segmentation **Head of the Department** Dr. V. S. Harilakshmi **Course Instructor** Dr. V. S. Harilakshmi Class : II M.Sc. Computer Science Title of the Course : Elective Course V: Data Science and Analytics Semester : III Course Code : SP233EC2 | Course Code | L | Т | P | S | Credits | Inst. Hours | Total
Hours | | Marks | | |-------------|---|---|---|---|---------|-------------|----------------|-----|----------|-------| | | | | | | | | | CIA | External | Total | | SP233EC2 | 4 | - | - | - | 3 | 4 | 60 | 25 | 75 | 100 | # **Learning Objectives** 1. Introduce the students to data science, big data and its ecosystem. 2. To explore the programming language R, with respect to the data mining algorithms | On the | successful completion of the course, students will be able to: | | |--------|--|--------| | 1 | understand the concept to data science and its techniques | K1, K2 | | 2 | review data analytics | K2, K3 | | 3 | Apply and determine appropriate Data Mining techniques using R to real time applications | K3, K4 | | 4 | analyze and evaluate clustering algorithms | K5, K6 | | 5 | create a machine learning environment using AI | K6 | K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyse; K5 - Evaluate; K6 - Create Teaching plan Total Contact hours: 60 (Including lectures, assignments and tests) | Unit | Module | Торіс | Teaching
Hours | Assessment
Hours | Cognitive
level | Pedagogy | Student
Centric
Method | E-
Resources | Assessment/
Evaluation
Methods | |------|--------|--|-------------------|---------------------|--------------------|---|--|---|--------------------------------------| | I | | Introduction | I | 1 | 1 | • | | • | 1 | | | 1 | Introduction of Data
Science: Benefits and uses
of data science and big data | 2 | 1 | K1 (R) | Lecture
with Case
Study | Think-Pair-
Share | YouTube
(Data
Science
Intro),
Kaggle
Blogs | Quiz,
Concept Map | | | 2 | Facets of Data – Data
Science Process | 1 | | K2 (U) | Visual
Mapping,
Flowchart-
based
Teaching | Brain
storming | IBM Data
Science
YouTube
Series | Flowchart
Assessment | | | 3 | Big Data Ecosystem and data science | 1 | 1 | K2 (U) | Analogy-
based
Teaching | Role Play (Data Pipeline Simulation) | Big Data
Articles,
NPTEL
Videos | Quiz,
Concept
Mapping | | | 4 | The Data Science process: Defining research goals and creating a project charter - | 1 | | K3 (Ap) | Process-
Oriented
Teaching | Case Study
Discussion | TutorialsPoi
nt, Coursera
Labs | Case Report | | | 5 | retrieving data-cleansing,
integrating and
transforming data | 2 | | K3 (Ap) | Demonstra
tion,
Hands-on
Lab | Problem-
Based
Learning,
Pair | Kaggle Datasets, Pandas/Nu mpy, | Lab
Evaluation,
Viva | | | 6 | Exploratory data analysis | 2 | 1 | K3 (Ap) | Sessions Demonstration and Compariso | Programming Peer Teaching | Google Dataset Search Analytics Vidhya, Scikit-learn | Worksheet,
CIA I | |----|---
--|---|---|---------|---|---|--|---| | | | | 1 | | | n Charts | Teaching | Docs | | | | 7 | Build the models | 1 | | K4 (An) | Case
Studies,
Guided
Model
Building | Collaborative
Coding, Peer
Feedback | scikit-learn,
Google
Colab,
TensorFlow
, PyTorch | Model
Accuracy
Test, Group
Assignment,
Internal Lab
Test | | | 8 | Presenting findings and building applications on top of them | 1 | | K5 (E) | Project-
Based
Learning | App
Showcases,
Student
Presentations | Streamlit,
Tableau,
Power BI,
GitHub | Capstone
Project, Peer
Review,
Rubric-Based
Evaluation | | | 9 | Types of Machine learning | 1 | | K2 (U) | Interactive
Lectures
with
Visuals | Concept
Mapping,
Think-Pair-
Share | StatQuest,
Simplilearn,
Blogs
(Medium) | Concept
Quiz, MCQ,
Short
Answers | | II | | Basics of Data Analytics | | 1 | | | | | | | | 1 | Introduction to Big Data
Analytics-Overview | 1 | 1 | K2 (U) | Video-
Based
Teaching | Quick
Summary
Game | YouTube
(Simplilearn
), Javatpoint | Quiz | | | 2 | Phases of Life Cycle | 1 | | K3 (Ap) | Diagram-
based
Pedagogy | Infographic
Design | NPTEL,
Google
Cloud Blog | Flow Diagram, Assignment | | | 3 | review of data analytics | 1 | | K1 (R) | Recap and
Group
Discussion | Brainstormin
g, Quiz Bowl | Course
Notes,
NPTEL,
SWAYAM | Oral Quiz,
Recap
Activity,
Written Test | | | 4 | Advanced data Analytics | 2 | 1 | K3 (Ap) | Comparati
ve | Group
Presentation | Gartner
Analytics | Rubric-Based
Evaluation | | | | | | | | Learning | | Reports | | |-----|---|---|---|---|---------|---------------------------------------|--|--|--| | | 5 | technology and tools Database Analytics: SQL Essentials, Text Analytics | 1 | 1 | K4 (An) | Hands-on
Coding
Sessions | Pair
Programming | W3Schools,
Mode
Analytics | Lab Exercise | | | 6 | Advanced SQL | 2 | | K4 (An) | Code-
Based
Explanatio | Debugging
Challenge | SQLZoo,
HackerRank | Query Output
Evaluation | | III | | Data Analytics using R | | | | | | | | | | 1 | Basic Data Analytics using R: R Graphical User Interfaces | 1 | 1 | K3 (Ap) | Tool-
Based
Teaching | Lab
Walkthrough | RStudio,
CRAN,
Kaggle | Lab Tasks,
Viva | | | 2 | Data Import and Export | 1 | | K3 (Ap) | Practical
Demo | Code Debugging Race | RDocument ation.org | Code Output | | | 3 | Attribute and Data Types | 2 | 1 | K4 (An) | Visualizati
on
Pedagogy | Data
Challenge | ggplot2
Tutorials,
Medium
Articles | Chart
Analysis | | | 4 | Descriptive Statistics | 1 | | K3 (Ap) | Problem-
Solving
Sessions | Real Dataset
Analysis | Tidyverse
Docs | Cleaning Log
Sheet | | | 5 | Exploratory Data Analysis | 2 | 1 | K4 (An) | Data
Storytellin | Peer Review | TowardsDat
aScience
Blogs | Report
Evaluation | | | 6 | Visualization Before
Analysis | 1 | | K3 (Ap) | Visualizati
on-Centric
Teaching | Tool Practice, Poster Presentation | matplotlib,
seaborn,
Tableau
Public | Visualization
Assignments,
Dashboard
Task | | | 7 | Dirty Data – Visualizing a
Single Variable | 1 | | K4 (An) | Explorator
y Visual
Teaching | Data Wrangling Challenges, Solo Projects | Jupyter
Notebook,
Real
Datasets | Cleaning
Report,
Visualization
Analysis | | | 8 | Examining Multiple
Variables – Data | 1 | | K4 (An) | Comparati
ve Case- | Data
Storytelling, | seaborn
(pairplots, | EDA Report,
Chart | | | | Exploration Versus Presentation. | | | | Based
Learning | Group
Analysis | heatmaps),
Excel
Power
Query | Comparison,
Peer
Evaluation | |----|---|---|-----|----------|---------|--|------------------------|---------------------------------------|-----------------------------------| | IV | | CLUSTERING | | | | | | | | | | 1 | Overview of Clustering: K-means – Use Cases | 1 | 1 | K4 (An) | Case-
Based
Teaching | Code
Simulation | R Bloggers,
Analytics
Vidhya | Lab Report | | | 2 | Overview of the Method – Perform a K-means Analysis using R – Classification | 1 | | K5 (E) | Algorithm
Walkthrou
gh | Tool
Comparison | Scikit-learn
Docs | Evaluation
Matrix | | | 3 | Decision Trees – Overview
of a Decision Tree –
Decision Tree Algorithms –
Evaluating a Decision Tree
– Decision Tree in R | 2 | 1 | K5 (E) | Live
Coding | Pair
Programming | RStudio
Tutorials | Code
Evaluation | | | 4 | Bayes' Theorem – Naive
Bayes Classifier | 2 | | K5 (E) | Probabilit
y Mapping | Mini-Project | YouTube,
IBM ML
Toolkit | Classifier
Output | | | 5 | Naïve Bayes in R | 1 | 1 | K6 (C) | Mathemati cal Derivation and Coding | Peer Coding | StatQuest | Assessment
Quiz | | V | | ARTIFICIAL INTELLIGE | NCE | <u> </u> | • | | | | • | | | 1 | Machine Learning and deep learning in data science | 2 | 1 | K2 (U) | Comparati ve Charts | Mind Map
Creation | Google AI
vs ML Page | Quiz | | | 2 | Clustering, association rules | 2 | | K3 (Ap) | Interactive
Problem
Solving | Graph
Plotting | sklearn.line
ar_model
Docs | Assignment | | | 3 | . Linear regression-logistic regression | 2 | 1 | K4 (An) | Mathemati
cal
Concept
Mapping | Use-case
Discussion | YouTube
(StatQuest),
Coursera | Concept Map | | 4 | Additional regression methods | 1 | | K4 (An) | Demo &
Code
Teaching | Prediction
Game | Towards Data Science, NPTEL | Model
Output Test | |---|-------------------------------|---|---|---------|-------------------------------|-----------------------|--------------------------------|-------------------------| | 5 | K Nearest Neighbour algorithm | 1 | 1 | K6 (C) | Project-
Based
Learning | End-to-End
Project | Google
Colab,
TensorFlow | Mini Project,
CIA II | Course Focussing on Employability/ Entrepreneurship/ Skill Development: Activities (Em / En /SD): SkillDevelopment - 1. R Programming Labs - 2. Data Science Case Studies - 3. ML Model Building in Python Course Focusing on Cross Cutting Issues (Professional Ethics/ Human Values/Environment Sustainability/ Gender Equity): - Environment Sustainability activities related to Cross Cutting Issues:- ### Assignments: - 1. Build an R script for descriptive and predictive analysis on a COVID-19 dataset. (Due: 08-08-2025) - 2. Create a dashboard visualizing clustering results from any real dataset. (Due: 10-09-2025) Seminar Topics: The Role of Data Science in E-Commerce, Ethics and Bias in Machine Learning Models ## Part A (1 Mark) - 1. What is the primary goal of data science? (K1, CO1) - 2. Which language is used in this course for data mining? (K1, CO3) - 3. What is K-means clustering used for? (K2, CO4) - 4. Name any two types of Machine Learning. (K2, CO1) - 5. What is Naive Bayes based on? (K2, CO4) #### Part B (6 Marks) - 1. Explain the data science process with suitable examples. (K2, CO1) - 2. Discuss any three tools used in data analytics. (K3, CO2) - 3. Describe the use of decision trees in classification. (K3, CO4) - 4. Explain the steps involved in data cleaning. (K4, CO3) - 5. Differentiate between supervised and unsupervised learning. (K4, CO5) Part C (12 Marks) - 1. Describe how clustering and classification are implemented in R. (K5, CO4) - 2. Analyze the entire data science workflow with an example. (K4, CO1) - 3. Explain and evaluate any two regression methods used in ML. (K5, CO5) - 4. Create a machine learning pipeline using K-NN for a dataset. (K6, CO5) # **Head of the Department** Dr. V. S. Harilakshmi **Course Instructor** Dr. J. Jackulin Reeja Class : II M.Sc. Computer Science Title of the Course : SKILL ENHANCEMENT COURSE II : CLOUD COMPUTING LAB Semester : III Course Code : SP233SE1 | Course | L | T | P | S | Credits | Inst. | Total | Marks | | | |----------|---|---|---|---|---------|-------|-------|-------|----------|-------| | Code | | | | | | Hours | Hours | CIA | External | Total | | SP233SE1 | - | - | 3 | - | 2 | 3 | 45 | 25 | 75 | 100 | # **Learning Objectives:** - 1. Be familiar with developing web services/Applications in grid framework - 2. Learn to run virtual machines of different configuration. #### **Course Outcomes** | On | On the successful completion of the course, students will able to: | | | | | | | | | |----|---|--------|--|--|--|--|--|--|--| | 1. | configure various virtualization tools such as Virtual Box, VMware | K1, K2 | | | | | | | | | | workstation. | | | | | | | | | | 2. | design and deploy a web application in a PaaS environment. | K2, K6 | | | | | | | | | 3. | learn how to simulate a cloud environment to implement new schedulers. | K4 | | | | | | | | | 4. | install and use a generic cloud environment that can be used as a private | K5, K6 | | | | | | | | | | cloud. | | | | | | | | | | 5. | manipulate large data sets in a parallel environment. | K3,K6 | | | | | | | | K1–Remember; K2–Understand; K3-Apply; K4-Analyze, K5- Evaluate, K6-Create # Teaching Plan Total Contact hours: 30 (Including Practical Classes and Assessments) | Unit | Торіс | Teaching
Hours | Assessment
Hours | Cognitive
level | Pedagogy | Student
Centric
Method | E-Resources |
Assessment/
Evaluation
Methods | |------|--|-------------------|---------------------|--------------------|--|---|--------------|--| | 1 | Working with Google Drive to make spreadsheet and notes. | 6 | 1 | K5 | Inquiry-Based Learning, Project-Based Learning | Computational techniques for solving problems | Google drive | Offering problem solving tasks at varying levels of complexity | | 2 | Install a C compiler in the virtual machine and execute a sample program. | 6 | 1 | К3 | Demonstrative | Practical | C Compiler | Project based
Evaluation | |---|--|---|---|----|---|---|---|---| | 3 | Install Virtual box/VMware Workstation with different flavours of Linux or Windows OS on top of windows7 | 6 | 1 | K6 | Blended
Learning,
Demonstration
method | Online
simulation | Virtualization
software
(VirtualBox,
VMware) | Case Discussion | | 4 | Launch the web application using the launcher. | 6 | 1 | K3 | Project based | Skill based | Web
browser-
Google
Chrome | Develop a web application | | 5 | Transfer files/folders from the host machine to the virtual machine. | 6 | | K5 | Demonstrative | Practical | VMware
Tool | lab evaluation | | 6 | Install Google App Engine. Develop simple web application using Python/Java. | 5 | 1 | K6 | Project-Based
Learning, | Using Computational Techniques for Solving problems | Google
Cloud
Platform(GC
P),Java(JDK) | Ask to develop a simple web application | | 7 | Simulate a cloud scenario using CloudSim | 5 | | K5 | Project Based | Practical | CloudSim
Toolkit | Presentation | Course Focussing on Employability/ Entrepreneurship/ Skill Development: Employability, Skill Development Activities (Em / En /SD): Hands on Training , Project Course Focusing on Cross Cutting Issues (Professional Ethics/ Human Values/Environment Sustainability/ Gender Equity): NIL **Environment Sustainability activities related to Cross Cutting Issues: NIL** # Sample questions - 1. To Work with Google Drive, make spreadsheet and notes. - 2. Install a C compiler in the virtual machine and execute a sample program. - 3. Install Virtual box/VMware Workstation with different flavours of Linux or Windows OS on top of windows 7 or 8. - 4. To Launch the web application using the launcher. - 5. Transfer files/folders from the host machine to the virtual machine. - 6. Install Google App Engine. Develop simple web application using Python/Java Head of the Department Dr. V. S. Harilakshmi Course Instructor Dr. F. Fanax Femy